Towards the automatic detection and identification of English puns

Tristan Miller, Mladen Turković

Abstract


Lexical polysemy, a fundamental characteristic of all human languages, has long been regarded as a major challenge to machine translation, human–computer interaction, and other applications of computational natural language processing (NLP). Traditional approaches to automatic word sense disambiguation (WSD) rest on the assumption that there exists a single, unambiguous communicative intention underlying every word in a document. However, writers sometimes intend for a word to be interpreted as simultaneously carrying multiple distinct meanings. This deliberate use of lexical ambiguity — i.e. punning — is a particularly common source of humour, and therefore has important implications for how NLP systems process documents and interact with users. In this paper we make a case for research into computational methods for the detection of puns in running text and for the isolation of the intended meanings. We discuss the challenges involved in adapting principles and techniques from WSD to humorously ambiguous text, and outline our plans for evaluating WSD-inspired systems in a dedicated pun identification task. We describe the compilation of a large manually annotated corpus of puns and present an analysis of its properties. While our work is principally concerned with simple puns which are monolexemic and homographic (i.e. exploiting single words which have different meanings but are spelled identically), we touch on the challenges involved in processing other types.


Keywords


puns, word sense disambiguation, lexical semantics, paronomasia, computational humour

Full Text:

VIEW FULL TEXT HERE

References


Agirre, E. & Edmonds, P. (eds.) (2006). Word Sense Disambiguation: Algorithms and Applications. Text, Speech, and Language Technology, Volume 33. Berlin: Springer.

Attardo, S. (1994). Linguistic Theories of Humor. Berlin: Mouton de Gruyter.

Bekinschtein, T. A., Davis, M. H., Rodd, J. M., & Owen, A. M. (2011). ‘Why clowns taste funny: The relationship between humor and semantic ambiguity’. The Journal of Neuroscience, 31 (26), pp. 9665–9671.

Bell, N. D., Crossley, S., & Hempelmann, C. F. (2011). ‘Wordplay in church marquees’. HUMOR: International Journal of Humor Research 24 (2), pp. 187–202.

Binsted, K. & Ritchie, G. (1994). ‘An implemented model of punning riddles’, in Proceedings of the 12th National Conference on Artificial Intelligence (AAAI 1994), Menlo Park, CA: AAAI Press, pp. 633–638.

Binsted, K. & Ritchie, G. (1997). ‘Computational rules for generating punning riddles’. HUMOR: International Journal of Humor Research 10 (1), pp. 25–76.

Bucaria, C. (2004). ‘Lexical and syntactic ambiguity as a source of humor: The case of newspaper headlines’. HUMOR: International Journal of Humor Research, 17 (3), pp. 279–309.

Budanitsky, A. & Hirst, G. (2006). ‘Evaluating WordNet-based measures of lexical semantic relatedness’. Computational Linguistics 32 (1), pp. 13–47.

Buitelaar, P. (2000). ‘Reducing lexical semantic complexity with systematic polysemous classes and underspecification’, in Proceedings of the 2000 NAACL-ANLP Workshop on Syntactic and Semantic Complexity in Natural Language Processing Systems, Volume 1, Stroudsburg, PA: Association for Computational Linguistics, pp. 14–19.

Crosbie, J. S. (1977). Crosbie’s Dictionary of Puns. New York: Harmony.

Culler, J. D. (ed.) (1988). On Puns: The Foundation of Letters. Oxford: Basil Blackwell.

Delabastita, D. (1997a). ‘Introduction’, in Delabastita, D. (ed.), Traductio: Essays on Punning and Translation, Manchester: St. Jerome, pp. 1–22.

Delabastita, D. (ed.) (1997b). Traductio: Essays on Punning and Translation. Manchester: St. Jerome.

Fellbaum, C. (ed.) (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.

Gale, W., Ward Church, K. & Yarowsky, D. (1992). ‘Estimating upper and lower bounds on the performance of word-sense disambiguation programs’, in Proceedings of the 30th Annual Meeting of the Association of Computational Linguistics (ACL 1992), Stroudsburg, PA: Association for Computational Linguistics, pp. 249–256.

Hempelmann, C. F. (2003a). Paronomasic Puns: Target Recoverability Towards Automatic Generation. West Lafayette, IN: Purdue University. PhD thesis.

Hempelmann, C. F. (2003b). ‘YPS – The Ynperfect Pun Selector for computational humor’, in Proceedings of the Workshop on Humor Modeling in the Interface at the Conference on Human Factors in Computing Systems (CHI 2003), New York: Association for Computing Machinery.

Hempelmann, C. F. (2008). ‘Computational humor: Beyond the pun?’ In Raskin, V. (ed.), The Primer of Humor Research. Humor Research, Volume 8. Berlin: Mouton de Gruyter , pp. 333–360.

Hirst, G. (1987). Semantic Interpretation and the Resolution of Ambiguity. Cambridge: Cambridge University Press.

Hong, B. A. & Ong, E. (2009). ‘Automatically extracting word relationships as templates for pun generation’, in Proceedings of the 1st Workshop on Computational Approaches to Linguistic Creativity (CALC 2009), Stroudsburg, PA: Association for Computational Linguistics, pp. 24–31.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L. & Weischedel, R. (2006). ‘OntoNotes: The 90% solution’, in Proceedings of the Human Language Technology Conference of the NAACL (Short Papers) (HLT-NAACL 2006), Stroudsburg, PA: Association for Computational Linguistics, pp. 57–60.

Ide, N. & Wilks, Y. (2006). ‘Making sense about sense’, in Agirre, E. & Edmonds, P. (eds.), Word Sense Disambiguation: Algorithms and Applications. Text, Speech, and Language Technology, Volume 33. Berlin: Springer.

Jurgens, D. (2014). ‘An analysis of ambiguity in word sense annotations’, in Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J. & Piperidis, S. (eds.), Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC 2014), Paris: European Language Resources Association, pp. 3006–3012.

Jurgens, D. & Klapaftis, I. (2013). ‘SemEval-2013 Task 13: Word sense induction for graded and non-graded senses’, in Proceedings of the 7th International Workshop on Semantic Evaluation (SemEval 2013), Stroudsburg, PA: Association for Computational Linguistics, pp. 290–299.

Kaplan, N. & Lucas, T. (2001). ‘Comprensión del humorismo en inglés: Estudio de las estrategias de inferencia utilizadas por estudiantes avanzados de inglés como lengua extranjera en la interpretación de los retruécanos en historietas cómicas en lengua inglesa’. Anales de la Universidad Metropolitana 1 (2), pp. 245–258.

Kawahara, S. (2010). Papers on Japanese imperfect puns. Online collection of previously published journal and conference articles. Available online: http://user.keio.ac.jp/~kawahara/pdf/punbook.pdf [Accessed 17 June 2015].

Keller, S. D. (2009). The Development of Shakespeare’s Rhetoric: A Study of Nine Plays. Swiss Studies in English, Volume 136. Tübingen: Narr.

Kilgarriff, A. (2001). ‘English lexical sample task description’, in Proceedings of Senseval-2: 2nd International Workshop on Evaluating Word Sense Disambiguation Systems, Stroudsburg, PA: Association for Computational Linguistics, pp. 17–20.

Krippendorff, K. (1980). Content Analysis: An Introduction to its Methodology. Beverly Hills, CA: Sage.

Lagerwerf, L. (2002). ‘Deliberate ambiguity in slogans: Recognition and appreciation’. Document Design 3 (3), pp. 245–260.

Lessard, G., Levison, M. & Venour, C. (2002). ‘Cleverness versus funniness’, in Proceedings of the 20th Twente Workshop on Language Technology, Enschede: Universiteit Twente, pp. 137–145.

Lippmann, L. G. & Dunn, M. L. (2000). ‘Contextual connections within puns: Effects on perceived humor and memory’. Journal of General Psychology 127 (2), pp. 185–197.

Lucas, T. (2004). Deciphering the Meaning of Puns in Learning English as a Second Language: A Study of Triadic Interaction. Tallahassee, FL: Florida State University. PhD thesis.

Ludlow, P. J. (1996). ‘Semantic Ambiguity and Underspecification’ (review). Computational Linguistics 3 (23), pp. 476–482.

Mihalcea, R. & Chklovski, T. (2003). ‘Open Mind Word Expert: Creating large annotated data collections with Web users’ help’, in Proceedings of the 4th International Workshop on Linguistically Interpreted Corpora (LINC 2003), Stroudsburg, PA: Association for Computational Linguistics.

Mihalcea, R. & Strapparava, C. (2005). ‘Making computers laugh: Investigations in automatic humor recognition’, in Proceedings of the 11th Human Language Technology Conference and the 10th Conference on Empirical Methods in Natural Language Processing (HLT-EMNLP 2005), Stroudsburg, PA: Association for Computational Linguistics, pp. 531–538.

Mihalcea, R. & Strapparava, C. (2006). ‘Learning to laugh (automatically): Computational models for humor recognition’. Computational Intelligence 22 (2), pp. 126–142.

Miller, G. A., Leacock, C., Tengi, R. & Bunker, R. T. (1993). ‘A semantic concordance’, in Proceedings of the 6th Human Language Technologies Conference (HLT 1993), Stroudsburg, PA: Association for Computational Linguistics, pp. 303–308.

Miller, T., Biemann, C., Zesch, T. & Gurevych, I. (2012). ‘Using distributional similarity for lexical expansion in knowledge-based word sense disambiguation’, in Proceedings of the 24th International Conference on Computational Linguistics (COLING 2012), Mumbai: COLING 2012 Organizing Committee, pp. 1781–1796.

Miller, T. & Gurevych, I. (2015). ‘Automatic disambiguation of English puns’, in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015), Stroudsburg, PA: Association for Computational Linguistics, pp. 719–729.

Monnot, M. (1981). Selling America: Puns, Language and Advertising. Washington, DC: University Press of America.

Monnot, M. (1982). ‘Puns in advertising: Ambiguity as verbal aggression’. Maledicta 6, pp. 7–20.

Morkes, J., Kernal, H. K. & Nass, C. (1999). ‘Effects of humor in task-oriented human–computer interaction and computer-mediated communication: A direct test of SRCT theory’. Human–Computer Interaction 14 (4), pp. 395–435.

Navigli, R. (2009). ‘Word sense disambiguation: A survey’. ACM Computing Surveys 41, pp. 10:1–10:69.

Navigli, R. & Lapata, M. (2010). ‘An experimental study of graph connectivity for unsupervised word sense disambiguation’. IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (4), pp. 678–692.

Navigli, R., Litkowski, K. C. & Hargraves, O. (2007). ‘SemEval-2007 Task 07: Coarse-grained English All-words Task’, in Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), Stroudsburg, PA: Association for Computational Linguistics, pp. 30–35.

Palmer, M., Fellbaum, C., Cotton, S., Delfs, L. & Dang, H. T. (2001). ‘English tasks: All-words and verb lexical sample’, in Proceedings of Senseval-2: 2nd International Workshop on Evaluating Word Sense Disambiguation Systems, Stroudsburg, PA: Association for Computational Linguistics, pp. 21–24.

Palmer, M., Ng, H. T. & Dang, H. T. (2006). ‘Evaluation of WSD systems’, in Agirre, E. & Edmonds, P. (eds.), Word Sense Disambiguation: Algorithms and Applications. Text, Speech, and Language Technology, Volume 33. Berlin: Springer.

Passonneau, R. J. (2006). ‘Measuring agreement on set-valued items (MASI) for semantic and pragmatic annotation’, in Proceedings of the 5th International Conference on Language Resources and Evaluations (LREC 2006), Paris: European Language Resources Association, pp. 831–836.

Passonneau, R. J., Baker, C., Fellbaum, C. & Ide, N. (2012). ‘The MASC word sense sentence corpus’, in Proceedings of the 8th International Conference on Language Resources and Evaluations (LREC 2012), Paris: European Language Resources Association, pp. 3025–3030.

Passonneau, R. J., Habash, N. & Rambow, O. (2006). ‘Inter-annotator agreement on a multilingual semantic annotation task’, in Proceedings of the 5th International Conference on Language Resources and Evaluations (LREC 2006), Paris: European Language Resources Association, pp. 1951–1956.

Redfern, W. (1984). Puns. Oxford: Basil Blackwell.

Ritchie, G. D. (2004). The Linguistic Analysis of Jokes. London: Routledge.

Ritchie, G. D. (2005). ‘Computational mechanisms for pun generation’, in Wilcock, G., Jokinen, K., Mellish, C. & Reiter E. (eds.), Proceedings of the 10th European Workshop on Natural Language Generation, Stroudsburg, PA: Association for Computational Linguistics, pp. 8–10.

Rubinstein, F. (1984). A Dictionary of Shakespeare’s Sexual Puns and Their Significance. London: Macmillan.

Schröter, T. (2005). Shun the Pun, Rescue the Rhyme? The Dubbing and Subtitling of Language-Play in Film. Karlstad: Karlstad University. PhD thesis.

Sharp, H. S. (1984). Advertising Slogans of America. Metuchen, NJ: Scarecrow Press.

Snyder, B. & Palmer, M. (2004). ‘The English all-words task’, in Mihalcea, R. & Edmonds, P. (eds.), Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (Senseval-3), Stroudsburg, PA: Association for Computational Linguistics, pp. 41–43.

Taylor, J. M. & Mazlack, L. J. (2004). ‘Computationally recognizing wordplay in jokes’, in Forbus, K., Gentner, D. & Regier, T. (eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society (CogSci 2004), Mahwah, NJ: Lawrence Erlbaum Associates, pp. 1315–1320.

Valitutti, A., Strapparava, C. & Stock, O. (2008). ‘Textual affect sensing for computational advertising’, in Proceedings of the AAAI Spring Symposium on Creative Intelligent Systems, Menlo Park, CA: AAAI Press, pp. 117–122.

Venour, C. (1999). The Computational Generation of a Class of Puns. Kingston, ON: Queen’s University. Master’s thesis.

Wurth, L. (1895). Das Wortspiel bei Shakespeare. Vienna: Wilhelm Braumüller.

Yimam, S. M., Gurevych, I., de Castilho, R. E. & Biemann, C. (2013). ‘WebAnno: A flexible, web-based and visually supported system for distributed annotations’, in Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (System Demonstrations) (ACL 2013), Stroudsburg, PA: Association for Computational Linguistics, pp. 1–6.

Yokogawa, T. (2002). ‘Japanese pun analyzer using articulation similarities’, in Proceedings of the 11th IEEE International Conference on Fuzzy Systems (FUZZ 2002). Volume 2. Piscataway, NJ: IEEE Press, pp. 1114–1119.

Zipf, G. K. (1949). Human Behaviour and the Principle of Least Effort. Cambridge, MA: Addison–Wesley.

Zwicky, A. M. & Zwicky, E. D. (1986). ‘Imperfect puns, markedness, and phonological similarity: With fronds like these, who needs anemones?’ Folia Linguistica 20 (3–4), pp. 493–503.




DOI: http://dx.doi.org/10.7592/EJHR2016.4.1.miller

Refbacks

  • There are currently no refbacks.


Publication ethics and malpractice statement